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ABSTRACT 

In this thesis the overall throughput rate is examined from a container ship 

servicing the Sea Base to the objective ashore with attention paid to the Mobile Landing 

Platform.  An initial study was conducted using a variety of air and surface connectors 

considering the various technologies being developed for the Sea Base concept and the 

use of a T-AKE class ship acting as a warehouse.  A second study was then conducted 

taking the results from the initial sturdy to determine the maximum number of surface 

connectors could be employed to maximize the logistical throughput without incurring a 

wait time.  The number of loading spots versus the amount of deck space available for 

stowage of cargo was calculated for the various cases.  The surface connectors considered 

were the Landing Craft Air Cushioned (LCAC), the Next Generation Landing Craft Air 

Cushioned (LCAC(X)) and the Sea Base Connector Transformable Craft (T-Craft).  

Finally, a separate logistics simulation developed by Professor Gordis was then used to 

compare the different connectors, the effect of increasing the available deck space on the 

Mobile Landing Platform and the effects of technologies which would increase the 

connector load times. 
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I. INTRODUCTION 

Current Chief of Naval Operations, Admiral Gary Roughead, as well as his two 

predecessors has each stated that the future of amphibious operations lays in the Sea 

Basing concept [1], [2], [3].  Ideally, this will include air and/or surface connectors 

operating from a Mobile Landing Platform (MLP) as shown in Figure 1.  In the winter of 

2008, Geoff Main, a representative of the Office of Naval Research (ONR) approached 

the Naval Postgraduate School (NPS) to conduct an overall study of Sea Base enabling 

technologies.  This thesis’s purpose is to take the Sea Base technologies being developed 

by the Office of Naval Research and conduct an initial system design of the Mobile 

Landing Platform.  The study is broken into three sections: the Initial Study, the Mobile 

Landing Platform Model, and the Throughput Simulation which are described below.   

A. INITIAL STUDY 

The initial study uncovers trends and discovers weak links in the Sea Base supply 

chain from cargo container ship to the objective ashore via the MLP.  The various 

technologies being developed by ONR are examined in the initial study and considered 

for MLP Model and the Throughput Simulation.  Several of these technologies are 

critical enablers such as the Large Vessel Interface Lift On / Lift Off, meaning that the 

operation cannot proceed without them.  Others, such as Automated Warehouse, may or 

may not increase overall throughput.  Microsoft Excel was used to provide a visual 

representation of multiple situations (i.e., different technologies, number and types of 

connectors) so that recommendations could be made on the Sea Base architecture. 

B. MOBILE LANDING PLATFORM (MLP) MODELING 

Second, the study takes trends discovered in the initial study and refines the Sea 

Base architecture.  This architecture is then used to develop a program which models the 

MLP to determine the maximum amount of surface connectors that may be utilized 

without saturating the logistical train, thereby causing inefficiencies in the system.  Also, 

the model will consider how many loading spots as well as how much storage space must 
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be on the MLP given a certain number and type of surface connector.  The number of 

connectors, loading spots, and storage space will finally be given as a function of the 

connector load rate.  Demonstrations have shown that this part of the logistical train may 

be done with Landing Craft-Air Cushioned (LCACs) “flying” onto one of the modified 

commercial heavy lift ships such as MIGHTY SERVANT 1.  Since the surface 

connectors will dominate the logistical throughput; the study will concentrate on this area 

with the air connectors being examined in the initial study only.   

C. THROUGHPUT SIMULATION 

The third and final section takes the number of surface connectors evaluated, the 

number of loading spots, and the amount of storage space on the MLP and inputs them 

into a throughput simulation.  This simulation, developed by Professor Joshua Gordis, 

Naval Postgraduate School, then compares the different types of connectors being 

considered, and discovers advantages that may be gained in the throughput with 

investments in several technologies.   

 

 

Figure 1.   Sea Base Scenario 
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Upon conclusion, this study will take the results of the Initial Study, the MLP 

Model, and the Throughput Simulation and will offer a recommendation on the concept 

design of the MLP in order to maximize the logistical throughput and provide additional 

recommendations for areas of further research.   
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II. SEA BASE OVERVIEW 

A. SEA POWER 21 

Sea basing is defined as “enhanced operational independence and support for joint 

forces provided by networked, mobile, and secure sovereign platforms operating in the 

maritime domain” [2].  Admiral Clark, former Chief of Naval Operations stated in Sea 

Power 21 in 2002, “We often cite asymmetric challenges when referring to enemy 

threats, virtually assuming such advantages belong only to our adversaries.  "Sea Power 

21" is built on a foundation of American asymmetric strengths that are powerful and 

uniquely ours” [2].  The goal of the Sea Base is to provide the Combatant and JTF 

Commanders with an integrated command and control and logistic support capability 

joint in nature.  By keeping these capabilities afloat, Sea Basing strengthens force 

protection and frees strategic airlift and sealift to support missions ashore.  The Sea Base 

consists of numerous platforms to include aircraft carriers, amphibious ships, surface 

combatants, and the strategic sealift fleet.  Sea Basing as defined in Sea Power 21 also 

provides the following [2]: 

1. Sea Basing Impact 

 Pre-positioned warfighting capabilities for immediate employment 

 Enhanced joint support from a fully netted, dispersed naval force 

 Strengthened international coalition building 

 Increased joint force security and operational agility 

 Minimized operational reliance on shore infrastructure 

2. Sea Basing Capabilities 

 Enhanced afloat positioning of joint assets 

 Offensive and defensive power projection 

 Command and control 
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 Integrated joint logistics 

 Accelerated deployment and employment timelines 

3. Future Sea Basing Technologies 

 Enhanced sea-based joint command and control 

 Heavy equipment transfer capabilities 

 Intra-theater high-speed sealift 

 Improved vertical delivery methods 

 Integrated joint logistics 

 Rotational crewing infrastructure 

 International data-sharing networks 

4. Sea Basing Action Steps 

 Exploit the advantages of sea-based forces wherever possible  

 Develop technologies to enhance on-station time and minimize 

maintenance requirements 

 Experiment with innovative employment concepts and platforms 

 Challenge every assumption that results in shore basing of Navy 

capabilities 

B. CURRENT STATE – SEA POWER FOR A NEW ERA (2007) 

1. Importance of Sealift 

The importance of sealift cannot be over stated.  It allows for the movement and 

support for U.S. combat forces afloat and ashore.  In combat operations in the Arabian 

Gulf from Desert Shield/Desert Storm in 1990 to Operation Iraqi Freedom in 2003, sealift 

transported ninety five percent of all supplies to and from the areas of operations [3].  Sea 

Basing will expand upon this already robust capability. 
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2. Strategic Sealift Fleet 

The Navy’s strategic sealift fleet is broken down into three areas:  

 The Prepositioned Force 

 The Surge Fleet 

 Other support ships.   

The first area is the Prepositioned ships which include the Maritime Prepostioning 

Force which supports the Marine Corps, the Combat Prepostioning Force which supports 

the Army, and the Logistics Prepositioning Ships which support the Navy, Air Force, and 

Defense Logistics Agency.  The Surge Fleet consists of Fast Sealift Ships (FSS), Large 

Medium-Speed Roll-On Roll-Off (LMSR) ships, and the ships of the Maritime 

Administration’s Ready Reserve Force (RRF).  The final assets include hospital ships, 

aviation maintenance ships and commercial sealift assets if contracted to support specific 

mission requirements [3]. 

3. Future of Sea Basing 

Even now, Sea Basing platforms are supporting emerging concepts of Operational 

and Ship-to-Objective Maneuver which are hallmarks of expeditionary maneuver warfare 

[3].  These concepts, combined with new doctrine and emerging technologies will enable 

the military to achieve its goal of allowing joint and allied forces the capability to deploy 

and sustain operations without dependence on shore based infrastructure in forward and 

sometimes remote areas. 
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III. ENABLING TECHNOLOGIES 

Several new technologies being developed through the Office of Naval Research 

will be considered in this study.  These technologies are aimed at addressing the onload, 

offload, and material management aspects of the Sea Basing concept.  Their goal is to 

improve the receipt, handling, stowage, and offload of stores to forces ashore [4].  

Technologies being considered are:  

 Large to Large Vessel Interface Lift On/Lift Off (LVI LO/LO) 

 Shipboard ISO Container Breakout and Repacking (CB&R) 

 Compact Agile Material Mover (CAMM) 

 Automated Warehouse (AW) 

 High Rate Vertical/Horizontal Movement (HRVHMM) 

 Interface Ramp Technologies (IRT)  

 Small to Large Vessel At-Sea Transfer (STLVAST)  

These technologies will be explained below and future capability surface and air 

connectors such as the Sea Base Connector Transformable Craft (T-Craft) and X-Craft 

will be discussed in Chapter IV. 



 10

A. LARGE TO LARGE VESSEL INTERFACE LIFT ON/LIFT OFF (LVI 
LO/LO) 

 

Figure 2.   Large to Large Vessel Interface Lift On/Lift Off From [5] 

 

Large to Large Vessel Interface Lift On/Lift Off (LVI LO/LO) is one of the most 

essential technologies to the Sea Base concept.  This technology enables the transfer of 

standard ISO containers and other heavy loads from a variety of military and commercial 

ships.  Without it, the T-AKE would have to return to an advance base to resupply every 

few days depending upon the size of the force ashore.  This could double or even triple 

the number of ships required to fulfill the Sea Base mission.  Details of this proposed 

capability include: motion sensing and compensation for the ships and/or the cranes 

which will allow safe and efficient transfer of cargo, ability to maintain optimal cargo 

throughput rates through sea state four, and the ability to transfer cargo between two 

ships directly alongside each other at zero forward speed or underway at slow speed in 

the open ocean [4].  The metrics for the LVI LO/LO are 20 lifts per hour for standard ISO 

containers, operational through sea state four with an objective of sea state five, and an 

interface/disconnect for operational connectivity of the Sea Base platforms established at 

a threshold of two hours with an objective of one hour [4]. 
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B. SHIPBOARD ISO CONTAINER BREAKOUT AND REPACKING (CB&R) 

The Shipboard ISO Container Breakout and Repacking (CB&R) technology is 

being developed to efficiently breakout the pallets from the containers delivered from a 

cargo container ship.  A standard ISO 20 ft container will be unloaded at an objective of 

five minutes (objective) and ten minutes (threshold) using a minimal amount of operators 

and machinery.  The container will then be repacked with retrograde at an objective of 10 

minutes (objective) and 15 minutes (threshold).  All of this will be accomplished while 

maintaining positive control through sea state five [6]. 

C. COMPACT AGILE MATERIAL MOVER (CAMM) 

The overall purpose of the CAMM technology is to increase the internal 

movement of cargo onboard ships by a highly maneuverable, omni-directional material 

mover enabled by human strength amplification technology, omni directional movement 

capability along with ship motion compensation algorithms.  This program was canceled, 

however, in FY07 due to the loss of a transition sponsor [4].  The capability is included in 

the model to study the need for a technology such as this without regard to its specifics.  

With this, a metric of 70 tons per hour for the T-AKE strike up and strike down rates is 

used for the initial study.    

D. AUTOMATED WAREHOUSE (AW) 

Automated Warehouse (AW) is another capability that is focused on throughput 

internal to the T-AKE.  It takes existing commercial Automated Storage and Retrieval 

Systems (ASRS) and adapts them to shipboard environments for the purpose of not only 

dramatically increasing throughput, but also reducing workload and increasing reliability 

in material handling tasks by replacing time consuming manual tasks by an automated 

stowage and handling system [4].  (See Figure 3) 
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Figure 3.   Automated Warehouse From [7] 

 

This technology has recently transitioned to the research and development phase 

in FY07 and in this model, the enabling capability metric of 105 tons per hour throughput 

rate is used [4].   

E. HIGH RATE VERTICAL/HORIZONTAL MATERIAL MOVEMENT 
(HRVHMM) 

The High Rate Vertical/Horizontal Material Movement (HRVHMM) is a system 

designed to be interoperable with the Automated Warehouse.  This capability is designed 

to provide an end to end solution for internal cargo movement to include a seamless 

transition from horizontal modes to vertical modes.  It will ultimately replace the current 

system of elevators, conveyors, dumb waiters, chain falls and other handling equipment 

[4].   
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Figure 4.   High Rate Vertical/Horizontal Material Movement (HRVHMM) From [7] 

Ideally, this system will take cargo from storage directly to the transfer station 

(i.e., flight deck for the air connectors or the ramp for transfer to the MLP) without any 

requirement for additional handling.  For the model, a throughput rate of 105 LT per hour 

with a threshold of 70 LT per hour is used [4].   

F. INTERFACE RAMP TECHNOLOGIES (IRT) 

The capability of transferring cargo between the T-AKE and the MLP is enabled 

by Interface Ramp Technologies.  The transfer of material at a high rate between two 

large vessels without moving through the water is a complicated problem.  The essential 

function can be seen in Figure 6.  The installation of this ramp on the T-AKE would of 

course require a major modification to current T-AKEs.  The initial study intends to 

discover if this would be a worthwhile investment. 
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Figure 5.   Interface Ramp Technologies From [7] 

 
 

G. SMALL TO LARGE VESSEL AT-SEA TRANSFER (STLVAST) 

The Small to Large Vessel At-Sea Transfer (STLVAST) capability enables the 

transfer of cargo from the MLP to smaller surface connectors.  Potential products may 

include collapsible wing walls combined with low freeboard to guide the connectors onto 

the deck and stabilize once in a loading position.  Also, fendering will be used to 

accommodate other vessels such as the Joint High Speed Vessel (JHSV).  The use of 

LCACs as connectors has been experimented in actual LCAC operations with the 

Dockwise ship, MIGHTY SERVANT 1, to be discussed in the vessels section. 
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Figure 6.   Theoretical Small to Large Vessel At-Sea Transfer (STLVAST) From [7] 
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IV. PLATFORMS 

A. LOGISTIC VESSELS 

1. Cargo Ship 

The cargo ship used for this model is a typical cargo ship with the following 

characteristics shown in Table 1. 

 
Speed 25 kts 
Capacity 5260 TEU (Twenty Foot Equivalent Unit) Containers [8] 
 126000 tons cargo 

Table 1.   Cargo Ship Characteristics 

 

The cargo carrying capacity was taken as the average of one of the major ship 

lines, in this case Maersk Line.  Each container contains approximately 24 tons of cargo 

and the speed was also taken as a nominal container ship speed. 

 

 

Figure 7.   Container Ship From [9] 
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2. T-AKE 

The Lewis and Clark Class (T-AKE) Dry Cargo/Ammunition Ship is used in the 

model as the Sea Base warehouse taking stores from the Cargo Ship and delivering the 

stores to the Mobile Landing Platform (MLP) as seen in Figure 8. 

 

 

Figure 8.   Sea Base Scenario 

 

Currently being built by National Steel and Shipbuilding Company in San Diego, 

CA, this class represents the next generation of logistic ships.  Its stated mission is to 

“deliver ammunition, provisions, stores, spare parts, potable water and petroleum 

products to carrier battle groups and other naval forces, serving as a shuttle ship or station 

ship” [10].  The characteristics are listed below. 
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Length (Overall) 689 ft 
Beam 105.6 ft 
Draft (Design) 29.9 ft 
Displacement 40352 LT 
Speed 20 kts 
Range 14000 nm 
Dry Cargo Capacity 7358 tons 
Cargo Fuel Capacity 23,450 bbl 
Cargo Potable Water Capacity 52,800 gal 

Table 2.   T-AKE Characteristics From [10] 

 

The design of this class of ships makes it ideal to act as the hub in the Sea Base 

architecture.  Here the Large to Large Vessel Interface Lift On/Lift Off and the Interface 

Ramp Technology are critical to the transfer of cargo between the container ship and the 

mobile landing platform respectively.  Also, the effect of the Compact Agile Material 

Mover, Automated Warehouse, and High Rate Vertical/Horizontal Material Movement 

technologies is observed versus traditional strike up and strike down methods on the T-

AKE to see if these new technologies make a worthwhile investment. 

 

 

Figure 9.   Lewis and Clark (T-AKE 1) Dry Cargo/Ammunition Ship From [11] 

3. Mobile Landing Platform 

MIGHTY SERVANT 1 is used as the Mobile Landing Platform (MLP) for our 

model.  Here, the results of the concept demonstration conducted in 2005 by Naval 

Surface Warfare Center (NSWC) Carderock Division are closely followed.  A need was 
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identified early in the Sea Base concept for an interface between the Sea Base ship, in 

this case the T-AKE, and surface connectors such as Landing Craft – Air Cushioned 

(LCAC) [12].  A commercial heavy lift ship was envisioned due to it’s large deck which 

could be ballasted down to enable LCACs to “fly” on while at the same time accepting a 

ramp from the Sea Base ship.  Interface Ramp Technology (IRT) is essential for the 

transfer of goods to the MLP and the Small to Large Vessel At-Sea Transfer Sea Base 

Connector (STLVAST) is essential for the loading of surface connectors. 

 

 

Figure 10.   MIGHTY SERVANT 1 and WATKINS Moored Skin-to-Skin From [12] 
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Length (Overall) 190.03 m 
Beam 50.0 m 
Draft (Test Cond) 11 m 
Displacement (Test Cond) 75,644 LT 
Speed 14 kts 
Deck Space 10 X 150 m 
Deck Load 19-40 tons/m2 

Table 3.   MIGHTY SERVANT 1 Characteristics From [12] 

B. SURFACE CONNECTORS 

1. Landing Craft Air Cushioned (LCAC) 

The U.S. Navy’s LCAC is the default surface connector in this model even 

though other connectors will be studied since it represents current capability.  The LCAC 

represents a major revolution in amphibious warfare.  A hovercraft by design, it can 

access over 80% of the world’s coastlines whereas a traditional landing craft could only 

access 17% [13].  In addition, the LCAC’s ability to “fly” onto the Mobile Landing 

Platform (MLP) displayed in Figure 12 makes it an ideal candidate for the Sea Base 

concept.  The load here is limited by the cargo load characteristic rather than the cargo 

area using standard 1000 lb pallets. 

 

Length (On Cushion)  87 ft 11 in 
Beam (On Cushion) 47 ft 0 in 
Draft (Off Cushion) 3 ft 0 in 
Displacement (Full Load) 200 tons 
Speed (w/ payload SS2) 40 kts 
Cargo Area 1,809 ft2 

Cargo Load 60 tons/75 tons overload 

Range 200 nm w/ payload,40kts 

Table 4.   LCAC Characteristics From [13] 
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Figure 11.   Landing Craft – Air Cushioned From [13] 

 

 

Figure 12.   LCAC onboard Mobile Landing Platform From [12] 
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2. Next Generation LCAC (LCAC(X)) 

Next Generation LCAC has gone thru several iterations including Heavy Lift 

Craft, Air Cushioned (HLCAC) and the LCAC Replacement Tactical Assault Connector 

(LCAC(X)) [13].  The Next Generation LCAC, whatever it may be called, will undergo 

experimentation using the characteristics in Table 5.  The result of that experimentation 

will determine if LCAC(X) is a viable alternative to current capability. 

 
Length (On Cushion) 124.5 ft 
Beam (On Cushion) 47 ft 0 in 
Draft (Off Cushion) 3 ft 0 in 
Speed (w/ payload SS2) 40 kts 
Cargo Load 150 tons 

Range 200 nm w/ payload,40kts 

Table 5.   Next Generation LCAC (LCAC(X)) Characteristics From [13] 

3. Sea Base Connector Transformable Craft (T-Craft) 

The Sea Base Connector Transformable Craft is a request for proposal from the 

Office of Naval Research with the ability to self deploy from an advance base to the Sea 

Base and serve as an assault connector and/or logistics connector able to deliver an 

objective of 5,500 sqft of payload with a maximum weight of 750 LT [14].  The T-Craft 

is also expected to have an amphibious capability most likely existing in a LCAC type 

skirt.  The payload with the T-Craft using standard 1000 lb pallets is limited by the deck 

space and the following characteristics will be used: 

 

Length (On Cushion) 120 ft 
Beam (On Cushion) 60 ft  
Speed (w/ payload SS2) 40 kts 
Cargo Load (deck space 
limited) 

206 tons 

Range 500 nm w/ payload,40kts 

Table 6.   T-Craft Characteristics From [14] 
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Figure 13.   T-Craft From [14] 

 

4. Joint High Speed Vessel (JHSV) 

The Joint High Speed Vessel (JHSV) is another surface connector that will be 

studied initially in order to find the advantages and disadvantages of adding a larger 

connector that takes longer to load and unload but holds more cargo.  Based upon 

Austal’s aluminum catamaran design (Figures 14 and 15) this system has already proved 

its value in the Pacific theater by providing high speed intra-theater sea lift (equal to 245 

C-17 sorties) [15]. 
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Figure 14.   Joint High Speed Vessel (JHSV) Schematic From [15] 

 

The Joint High Speed Vessel (JHSV) is given the following characteristics: 

 
Length 101 m 
Beam 26.65 m 
Draft 4.2 m 
Speed 40 kts 
Cargo Load 600 tons 

Range 4,500 nm 

Table 7.   Joint High Speed Vessel Characteristics From [15] 
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Figure 15.   High Speed Vessel (HSV) From [15] 

 

C. AIR CONNECTORS 

1. MV-22 Osprey 

The MV-22 Osprey represents the next generation multi-mission aircraft 

developed for the U.S. Navy, U.S. Marine Corp, and U.S. Special Operations Command.  

This aircraft utilizes tilt rotor technology to combine the speed, range, and efficiency of 

turboprop aircraft with the vertical take off, landing, and hover capabilities of a helicopter 

[16].  The ability of the Osprey to self-deploy makes it ideal for a Sea Base concept and 

for this model; it is given the following characteristics. 

 

Speed 240 kts 

Range 50 nm 

Payload 5 tons 

Table 8.   MV-22 Osprey Characteristics From [17] 
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Figure 16.   MV-22 Osprey From [17] 

 

2. CH-53 Super Stallion 

The CH-53E is the U.S. Navy and Marine Corps heavy lift helicopter.  Even 

though earlier variants are being phased out by the MV-22, the CH-53 is the only 

helicopter in the Marine Corp that can lift several systems including the M-198 howitzer 

and the Light Armored Vehicle (LAV) and retrieve all Marine Corps and most Navy 

tactical aircraft [18].  This ability has insured the Super Stallion as a mainstay in the fleet 

for years to come.  The CH-53E is given the following characteristics: 

 

Speed 150 kts 

Range  50 nm 

Payload 16 tons 

Table 9.   CH-53E Super Stallion Characteristics From [18] 
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Figure 17.   CH-53E Super Stallion From [18] 

 

3. X-Craft 

Future autonomous delivery technology is also represented in the form of the X-

Craft.  This represents a future capability which will provide for a small, lightweight, 

autonomous aircraft capable of delivering logistics.  Its advantage is the ability to deploy 

numerous aircraft in theater which would increase flexibility.  The X-Craft is given the 

following characteristics in Table 10 and shown in Figure 18 what such an aircraft might 

look like. 

 

Speed 240 kts 

Range  40 nm 

Payload 3 tons 

Table 10.   X-Craft Characteristics 
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Figure 18.   X-Craft From [7] 
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V. INITIAL ANALYSIS 

A. OVERVIEW OF CONCEPT 

An initial analysis of the problem was done to further focus the efforts of this 

study.  The scenario shown in Figure 19 was chosen with a container ship first bringing 

supplies to a T-AKE class ship.  The T-AKE ship then would distribute the supplies as 

necessary to fleet surface forces, air connectors (CH-53, MV-22, X-Craft), and the 

Mobile Landing Platform (MLP) which in this case was taken to be MIGHTY 

SERVANT 1.  The MLP then loads supplies to the surface connectors (LCAC, Next 

Generation LCAC, T-Craft, or JHSV).   

 

 

Figure 19.   Initial Concept Scenario 
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The weakest link in the chain concept was used to determine where the choke 

points were in the supply chain using payload transfer rates and the technologies listed in 

Chapter III. 

B. STAGES 

1. Container Ship to T-AKE Transfer 

For this portion of the supply chain, the Large to Large Vessel Interface Lift 

On/Lift Off (LVI LO/LO) crane was assumed to be on the T-AKE transferring containers 

from the container ship to the T-AKE.  A metric of 160 tons/hr was used for the container 

ship to T-AKE transfer calculated from the metric of 20 lifts per hour and each container 

containing 16 pallets at 1000 lbs each.  

2. T-AKE Internal Flow 

The T-AKE internal flow is broken up into several parts.  Once the container is 

placed on the T-AKE, a rate of unloading one container every five minutes is used.  With 

the container containing 16 pallets at 1000 lbs each, a transfer rate of 96 tons/hr is used.  

After the container is broken out and sent back to the container ship, a combination of 

High Rate Vertical/Horizontal Material Movement (HRVHMM) and Automated 

Warehouse (AW) are used with both technologies using a metric of 105 tons/hr for the 

strike down and subsequent strike up operations to the MLP, the VERTREP stations, and 

the fleet UNREP stations. 

3. T-AKE to MLP Transfer 

After striking up the cargo on the T-AKE has been completed it is then transferred 

from the T-AKE to the MLP via the interface ramp technologies and some sort of 

Compact Agile Material Mover (CAMM) type technology.  A throughput rate of 70 

tons/hr is used. 
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4. T-AKE to Air Connector to Shore 

At the same time that cargo is being transferred to the MLP, cargo is also being 

transferred to the flight deck for transfer via air connectors to the shore.  This throughput 

is calculated by the following: 

( )( )
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2 2
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5. T-AKE to Fleet UNREP 

It is also assumed that the T-AKE will have underway replenishment (UNREP) 

responsibilities with the fleet of amphibious ships and surface combatants safeguarding 

the Sea Base.  The number is estimated to be six ships in a standard expeditionary strike 

group, with three days between UNREPs and 300 tons transferred to each ship per 

UNREP evolution. 

6. MLP to Sea Connector to Shore 

In order to establish the transfer rate for the surface connectors, it must be 

established whether or not a wait time exists.  Wait time is defined as the period of time 

that a surface connector must wait upon returning to the MLP due to another connector in 

its spot.  The LCAC is used as an example and the wait time at a single loading spot is 

calculated as: 
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1 2 2 1( 1) ( 2 )w L u T d U u dt t N t t t t t t         (single loading spot) 

 
 
 

Figure 20.   Single Loading Spot Timeline 
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where Lt is defined as the time to load one connector while on the MLP.  N is defined as 

the number of connectors.  1dt  and 1ut  are defined as the docking and undocking time 

respectively for a single connector at the MLP whereas 2dt  and 2ut  are the docking and 

undocking times at the shore.  Tt  is defined as the one way transit time to the beach 

calculated as the distance to the shore divided by the speed of the connector.  Ut  is the 

time to unload one connector at the beach.  The timeline above (Figure 20) provides a 

visual representation of this situation.  In the case of multiple loading spots the variable 

ln  is introduced which is the number of loading spots.  A new variable is calculated as: 

l
l

N
m

n
  

and round up to the next integer.  The new wait time is then calculated as: 
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If wt is greater than zero then there is a wait time and the limiting factor is the rate 

of loading on the MLP ( LQ ).  This is calculated as: 

l
L

L

n P
Q

t
  

where P is defined as the cargo carrying ability of the connector. 

 

If wt is less than or equal to zero it is then set to zero.  This situation is seen in 

Figure 21 and the connector transfer rate is the limiting factor.  This is calculated as: 
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Figure 21.   Single Loading Spot (No Wait Time) 

 

A simple timeline test was conducted to test the accuracy of the calculation as 

seen in Figure 22. 
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Figure 22.   Test with No Wait Time 

 

C. RESULTS 

Several cases were run with this model using different combinations of surface 

and air connectors.  Figure 23 shows a typical result for the initial analysis.  Even with 

each of the technologies discussed earlier, the T-AKE overall seems to be a weak link in 

the throughput rate (as indicated by the circle). 

. 
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Figure 23.   Initial Throughput Analysis 

 

Incidentally, statements made by Geoff Main of the Office of Naval Research in 

June 2008 indicated that there were problems with placing a ramp on the T-AKE and that 

the Navy was now looking at placing the Large to Large Vessel Interface Lift On/Lift Off 

(LVI LO/LO) crane on the Mobile Landing Platform (MLP) [19].  This would enable 

transfer from the container ship directly to the MLP thereby cutting out the T-AKE 

totally, enabling it to focus on its fleet underway replenishment duties not only at the Sea 

Base but in the entire area of responsibility (AOR).  Additionally it is seen that the 

surface connector stage dominates the throughput.  To more fully understand this, further 

study is conducted in Chapter VI. 
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VI. MLP MODELING 

A. OVERVIEW OF CONCEPT  

Once the T-AKE is eliminated, the Mobile Landing Platform (MLP) is now the 

limiting platform and attention is now turned towards optimizing this link in the chain.  

The throughput on the MLP is a factor of the number and type of surface connectors 

used, the number of loading spots, and the loading time per connector.  The purpose of 

this model is to determine the maximum amount of connectors that may be employed 

without saturating the system and causing connector wait times.  Again, wait time is 

defined as the period of time that a surface connector must wait upon returning to the 

MLP due to another connector in its spot.  A program was developed with MATLAB 

using with the equations explained in Chapter V to model this portion of the logistical 

chain and the results will be shown in Section C.  

It is expected that with an increase in the load rate, the load time will decrease 

causing an increase in the amount of connectors that can be used. As the distance to the 

objective increase, the amount of connectors should also increase to compensate for 

longer transit times.  As larger connectors are used, it is also expected that less will be 

able to be employed due to increased area required for each loading spot and longer load 

times required for the same load rate.  

1. Connectors Used 

Three different connectors, the Landing Craft-Air Cushioned (LCAC) currently in 

service with the United States Navy, the Next Generation LCAC (LCAC(X)), and the Sea 

Base Connector Transformable Craft (T-Craft) as described in Section X will be used in 

the model.  Their characteristics are shown below.   
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a. Landing Craft Air Cushioned LCAC 

Length (On Cushion)  87 ft 11 in 
Beam (On Cushion) 47 ft 0 in 
Draft (Off Cushion) 3 ft 0 in 
Displacement (Full Load) 200 tons 
Speed (w/ payload SS2) 40 kts 
Cargo Area 1,809 ft2 

Cargo Load 60 tons/75 tons overload 

Range 200 nm w/ payload, 40 kts 

Table 11.   LCAC Characteristics [13] 

 

b. Next Generation Landing Craft Air Cushioned (LCAC(X)) 

Length (On Cushion) 124.5 ft 
Beam (On Cushion) 47 ft 0 in 
Draft (Off Cushion) 3 ft 0 in 
Speed (w/ payload SS2) 40 kts 
Cargo Load 150 tons 

Range 200 nm w/ payload, 40 kts 

Table 12.   LCAC(X) Characteristics [13] 

 

c. Sea Base Connector Transformable Craft (T-Craft) 

Length (On Cushion) 120 ft 
Beam (On Cushion) 60 ft  
Speed (w/ payload SS2) 40 kts 
Cargo Load (deck space 
limited) 

206 tons 

Range 500 nm w/ payload, 40 kts 

Table 13.   T-Craft Characteristics [14] 
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2. Overview of MLP Deck Space 

To calculate the deck space available for cargo storage on the MLP, the MIGHTY 

SERVANT 1 is used as a prototype with a listed deck space of 50 X 150 meters [20].  

The LVI LOLO crane is assumed to take a quarter of the available deck space which 

makes the total space available for pallets, the aisles between the pallets and loading 

spots to be 60547 ft2.  A standard navy pallet size is used for uniformity as shown in 

Table 14. 

 

Length 48 in 
Width 40 in  
Area 13.33 ft2 

Weight 1000 lbs 

Table 14.   Standard Pallet Size From [21] 

 

In addition, the deck area was calculated for the pallets being stacked one or two 

high (which effectively doubles the deck area).  To account for the aisles between the 

rows of pallets, a pallet length of 48 in. and a standard forklift turning radius of 102.4 in. 

is taken to calculate a pallet density of .4839 [22].  With this, an equation is developed for 

available deck space below. 
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The area taken up per loading spot was calculated to be: 

 
Connector Loading Spot Area 
LCAC 6336 ft2 

LCAC(X) 7476 ft2 

T-Craft 10080 ft2 

Table 15.   Loading Spot Areas 

 

A limit is reached in the amount of loading spots that can be place side by side 

along the length of the MLP and the following is found: 

 

MLP Deck Length

Loading Spot Width
n 

 

 

Connector Loading Spot Limit 
LCAC 8 

LCAC(X) 8 

T-Craft 7 

Table 16.   Loading Spot Limit 



 43

Ultimately the MLP cargo carrying capability is calculated as: 

 

MLP Deck Space (Pallets 1 high) LCAC HLCAC T-Craft
Loading Spots Deck Area (ft^2) Cargo (tons) Deck Area (ft^2) Cargo (tons) Deck Area (ft^2) Cargo (tons)

1 26233 984 25681 963 24421 916
2 23167 869 22063 828 19543 733
3 20101 754 18446 692 14666 550
4 17035 639 14828 556 9788 367
5 13969 524 11211 420 4910 184
6 10903 409 7593 285 32 1
7 7837 294 3975 149 0 0
8 4771 179 358 13

MLP Deck Space (Pallets 2 high) LCAC HLCAC T-Craft
Loading Spots Deck Area (ft^2) Cargo (tons) Deck Area (ft^2) Cargo (tons) Deck Area (ft^2) Cargo (tons)

1 52465 1968 51362 1927 48842 1832
2 46333 1738 44127 1655 39087 1466
3 40201 1508 36892 1384 29331 1100
4 34069 1278 29656 1112 19576 734
5 27937 1048 22421 841 9820 368
6 21806 818 15186 570 65 2
7 15674 588 7950 298 0 0
8 9542 358 715 27  

Table 17.   MLP Cargo Carrying Capability 

B. RESULTS 

1. Landing Craft Air Cushioned LCAC 

Applicable results are shown below for both the 10 nautical mile and the 25 

nautical mile distances to the objective.  Runs were conducted varying the number of 

LCACs from 10 to 70 at 10 nm and 10 to 80 LCACs at a distance of 25 nm to observe the 

maximum number of surface connectors that could be used given the number of loading 

spots compared to the MLP storage capacity for various load rates.  In this case 60 

tons/hr represents the current load rate, while 80 tons/hr represents an increase of 33% in 

the load rate.  100 tons/hr represents an increase of 66% and of course 120 tons/hr is a 

doubling of the load rate.  By doing this it is hoped to be shown whether or not 

investments in technologies which increase the load rates of the various surface 

connectors would be worth while. 
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a. 10 nm 

In Figure 24, it is shown that with 34 LCACs at a distance of 10 nm, 60 

tons/hr load rate, and seven loading spots, approximately 270 tons of MLP storage is 

required.  This is well below the 294 tons that is calculated in Section A for normal deck 

space and seven loading spots.  If the number of LCACs is increased to 36 as shown in 

Figure 25, eight loading spots are now required which then decreases the available deck 

space to 179 tons which is not enough to account for the approximately 290 tons now 

needed.  The rest of the cases were evaluated in the same manner for each of the 

connectors for the 10 nm and 25 nm distances to the objective, the various load rates 

listed above, and normal and double deck space.  The results are then tabulated in Tables 

18 and 19. 

 

Figure 24.   Case #13 / 34 LCACs / 10 nm 
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Figure 25.   Case #14 / 36 LCACs / 10 nm 

 

 

Figure 26.   Case #16 / 40 LCACs/ 10 nm 
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Figure 27.   Case #17 / 42 LCACs/ 10 nm 

 

 

Figure 28.   Case #20 / 48 LCACs/ 10 nm 
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Figure 29.   Case #23 / 54 LCACs/ 10 nm 

 

 

Figure 30.   Case #24 / 56 LCACs/ 10 nm 
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Figure 31.   Case #29 / 64 LCACs/ 10 nm 

 

b. 25 nm 

 

Figure 32.   Case #48 / 40 LCACs / 25 nm 

 

 

Figure 33.   Case #51 / 46 LCACs / 25 nm 
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Figure 34.   Case #52 / 48 LCACs / 25 nm 

 

 

Figure 35.   Case #55 / 54 LCACs / 25 nm 
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Figure 36.   Case #56 / 56 LCACs / 25 nm 

 

 

Figure 37.   Case #60 / 64 LCACs / 25 nm 
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Figure 38.   Case #65 / 74 LCACs / 25 nm 

2. Next Generation Landing Craft Air Cushioned (LCAC(X)) 

The Next Generation Landing Craft Air Cushioned was evaluated in the same 

manner as the LCAC.  Applicable results are shown below for the 10 and 25 nm cases 

and again tabulated in Tables 18 and 19. 

a. 10 nm 

 

 

Figure 39.   Case #74 / 16 Next Generation LCACs / 10 nm 
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Figure 40.   Case #76 / 20 Next Generation LCACs / 10 nm 

 

 

Figure 41.   Case #77 / 22 Next Generation LCACs / 10 nm 
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Figure 42.   Case #78 / 24 Next Generation LCACs / 10 nm 

 

 

Figure 43.   Case #80 / 28 Next Generation LCACs / 10 nm 
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Figure 44.   Case #81 / 30 Next Generation LCACs / 10 nm 

 

b. 25 nm 

 

Figure 45.   Case #93 / 18 Next Generation LCACs / 25 nm 

 

 

Figure 46.   Case #95 / 22 Next Generation LCACs / 25 nm 
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Figure 47.   Case #96 / 24 Next Generation LCACs / 25 nm 

 

 

Figure 48.   Case #97 / 26 Next Generation LCACs / 25 nm 

 

Figure 49.   Case #99 / 30 Next Generation LCACs / 25 nm 
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Figure 50.   Case #101 / 34 Next Generation LCACs / 25 nm 

 

3. T-Craft 

The T-Craft was evaluated in the same manner as the LCAC and the LCAC(X).  

Applicable results are shown below for the 10 and 25 nm cases and again tabulated in 

Tables 18 and 19. 

a. 10 nm 

 

 

Figure 51.   Case #108 / 12 T-Craft / 10 nm 
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Figure 52.   Case #109 / 14 T-Craft / 10 nm 

 

 

Figure 53.   Case #110 / 16 T-Craft / 10 nm 
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Figure 54.   Case #111 / 18 T-Craft / 10 nm 

 

 

Figure 55.   Case #112 / 20 T-Craft / 10 nm 
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b. 25 nm 

 

 

Figure 56.   Case #121 / 12 T-Craft / 25 nm 

 

 

Figure 57.   Case #122 / 14 T-Craft / 25 nm 
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Figure 58.   Case #123 / 16 T-Craft / 25 nm 

 

 

Figure 59.   Case #125 / 20 T-Craft / 25 nm 
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Figure 60.   Case #126 / 22 T-Craft / 25 nm 

C. SUMMARY 

The results of the MLP modeling are shown in Table 18 and 19.  As expected, 

these results demonstrate that with an increase in load rate more connectors can be loaded 

without having to wait for an open loading spot.  Also, with an increase of distance, more 

connectors are required to keep the loading spots at 100% capacity.  By varying the type 

of connector, the only thing that changes besides the size of the loading spots is the 

amount of payload each can carry.  Therefore less T-Craft and LCAC(X)s can be used 

since it takes more time to fully load and they take more space on the MLP.    

 

Connector Distance 100% Load Rate 133% Load Rate 166% Load Rate 200% Load Rate
LCAC 10nm 7/34 7/42 7/48 7/54
LCAC 25nm 7/40 7/48 7/56 7/64
LCAC(X) 10nm 5/16 5/20 5/22 5/24
LCAC(X) 25nm 5/18 5/22 5/24 4/26
T-Craft 10nm 4/12 4/14 3/14 3/16
T-Craft 25nm 4/12 4/14 4/16 3/16

Standard Deck Space

 

Table 18.   Ideal MLP Loading Spots/Number of Connectors (Standard Deck Space) 
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Connector Distance 100% Load Rate 133% Load Rate 166% Load Rate 200% Load Rate
LCAC 10nm 8/40 8/48 8/56 8/64
LCAC 25nm 8/46 8/54 8/64 8/74
LCAC(X) 10nm 6/20 6/22 6/28 6/30
LCAC(X) 25nm 6/22 6/26 6/30 5/34
T-Craft 10nm 4/12 4/14 4/18 4/20
T-Craft 25nm 5/14 4/16 4/20 4/22

Deck Space X 2

 

Table 19.   Ideal MLP Loading Spots/Number of Connectors (Deck Space X2) 

 

The final step in this study is to see how each case stands up in terms of the 

overall logistical goal of maximizing throughput. 
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VII. THROUGHPUT SIMULATION 

A. OVERVIEW 

To evaluate the throughput in each of the cases mentioned in Chapter VI, a Fleet 

Sustainment simulation developed by Professor Joshua Gordis, Naval Postgraduate 

School, is used for this study.  The simulation uses MATLAB and a “time domain 

simulation code in order to allow ‘real time’ prediction of throughput rates and 

optimization of sustainment network topology” [23].  While still in development it 

already provides an invaluable tool to discover trends in different scenarios. 

B. RESULTS 

In this simulation, we have 4,480 tons being transferred from a container ship to 

the objective.  This amount represents the amount of cargo required to supply four 

Marine Corps Expeditionary Battalions (MEB) or one regiment for one week [5].  One of 

the most unexpected results in this study comes in Figure 61 and 62 where it is apparent 

that throughput actually decreases with an increase in connector payload.  As discussed in 

Chapter VI, with larger payload there is a decrease in the number of connectors that are 

able to be used. Current practice relies on the belief that it is better to have a large cargo 

carrier than many smaller ones.  This may not be the case here since the available space 

to load on the MLP is so limited.  In Table 20 and Figure 61 it is shown that for standard 

deck space on the MLP when using the LCAC, there are clear increases in the throughput 

rate when the load rate is increased to 133% or an increase to 80 tons/hr.  These increases 

then start to level off with further increases of load rate.  With LCAC(X) and T-Craft, 

increases are observable to 166% load rate or 100 tons/hr and then start to level off.  This 

holds true for both 10 and 25 nm distances to the objective. 
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Connector Distance 100% Load Rate 133% Load Rate 166% Load Rate 200% Load Rate
LCAC 10nm 353.1 448.0 429.2 431.8
LCAC 25nm 333.4 416.7 402.1 399.9
LCAC(X) 10nm 228.6 282.5 328.4 353.5
LCAC(X) 25nm 220.2 269.7 309.0 314.4
T-Craft 10nm 191.9 229.4 217.5 246.3
T-Craft 25nm 185.9 213.0 257.1 236.6

Standard Deck Space

 

Table 20.   Throughput Rate (tons/hr) Standard Deck Space 
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Figure 61.   Throughput Rate (tons/hr) Standard Deck Space 

 

By doubling the deck space as shown in Table 21 and Figure 62 similar results are 

seen for the increase of throughput as a function of connector load rate. 

 

Connector Distance 100% Load Rate 133% Load Rate 166% Load Rate 200% Load Rate
LCAC 10nm 389.6 431.8 432.5 430.5
LCAC 25nm 365.7 404.4 399.9 403.3
LCAC(X) 10nm 261.4 317.2 355.3 360.7
LCAC(X) 25nm 250.4 303.1 338.1 333.8
T-Craft 10nm 191.9 229.4 272.0 303.7
T-Craft 25nm 216.2 226.3 260.2 289.0

Deck Space X 2

 

Table 21.   Throughput Rate (tons/hr) Deck Space X 2 
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Figure 62.   Throughput Rate (tons/hr) Deck Space X 2 

 

To observe increase in throughput as a function of MLP deck space it is observed 

for LCACs in Figure 63, that there is an advantage to having more stowage on the MLP 

when the connector load rate is 100% at 60 tons/hr but that advantage is lost when the 

load rate is increased. 
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Figure 63.   MLP Deck Space Comparison (LCAC) 
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When observing the LCAC(X) in Figure 64, the same advantage is extended to 

166% load rate (100 tons/hr) for the 10 nm distance to the objective and all the way to 

200% load rate (120 tons/hr) for the 25 nm distance to the objective. 
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Figure 64.   MLP Deck Space Comparison (LCAC(X)) 

 

For the T-Craft advantages of increasing the deck space are not evident until the 

load rate is increased to 166% (100 tons/hr) and 200% (120 tons/hr) as seen in Figure 65. 
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Figure 65.   MLP Deck Space Comparison (T-Craft) 
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Percent increases in throughput is tabulated below in Tables 22 and 23 and shown 

in Figure 66 for each of the connectors.  Values represent increase over that connector 

with increasing load rate and available MLP deck space. 

 

Connector Distance 100% Load Rate 133% Load Rate 166% Load Rate 200% Load Rate
LCAC 10nm 0.00% 26.88% 21.55% 22.29%
LCAC 25nm 0.00% 24.99% 20.61% 19.95%
LCAC(X) 10nm 0.00% 23.58% 43.66% 54.64%
LCAC(X) 25nm 0.00% 22.48% 40.33% 42.78%
T-Craft 10nm 0.00% 19.54% 13.34% 28.35%
T-Craft 25nm 0.00% 14.58% 38.30% 27.27%

Standard Deck Space

 

Table 22.   Percent Increase Throughput Rate Standard Deck Space 

 

Connector Distance 100% Load Rate 133% Load Rate 166% Load Rate 200% Load Rate
LCAC 10nm 10.34% 22.29% 22.49% 21.92%
LCAC 25nm 9.69% 21.30% 19.95% 20.97%
LCAC(X) 10nm 14.35% 38.76% 55.42% 57.79%
LCAC(X) 25nm 13.71% 37.65% 53.54% 51.59%
T-Craft 10nm 0.00% 19.54% 41.74% 58.26%
T-Craft 25nm 16.30% 21.73% 39.97% 55.46%

Deck Space X 2

 

Table 23.   Percent Increase Throughput Rate Deck Space X 2 
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Percent Increase of Throughput Rate
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Figure 66.   Percent Increase of Throughput Rate 

C. SUMMARY 

This study indicates that the best use of the Mobile Landing Platform (MLP) 

would be to employ the current LCACs in large numbers with a modest investment made 

to increase the load rate to about 80 tons/hr.  Should other connectors be used then 

investments could be made to increase the available deck space on the MLP by double 

stacking the pallets.  When using other connectors, investments could also be made to 

even further increase the load rate.  The amount and type of connectors used in on the 

MLP has huge implications in the overall throughput of cargo from the Sea Base to U.S. 

forces ashore.  Therefore, it is vital that we analyze this facet of the logistical train and 

design it to meet our present and future requirements. 
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VII. DISCUSSION 

Perhaps the biggest surprise in this study was the apparent advantage gained by 

using an increased number of Landing Craft Air Cushioned (LCAC) over a smaller 

number of larger connectors such as the Next Generation Landing Craft Air Cushioned 

(LCAC(X)) or the Sea Base Connector Transformable Craft (T-Craft).  This may be 

caused by the limited amount of space on the Mobile Landing Platform (MLP) which 

reduces the amount of loading spots the LCAC(X) and the T-Craft can utilize.  The 

possible implications of this result certainly indicate that more study is required.  One 

advantage of the T-Craft that was not able to be considered in this study was the ability of 

these vessels to self deploy.  This single ability may overshadow everything else due to 

the complications that may arise in getting 50 or so LCACs into theater.  Other 

advantages may be gained in utilizing the T-Craft in an initial assault phase of the 

operation with their ability to carry multiple vehicles ashore.  These advantages may or 

may not outweigh the current generation LCAC’s advantage in logistical throughput. 

The elimination of the T-AKE now represents new challenges in the logistical 

train.  Previously it was assumed that this platform would act as the warehouse for the 

Sea Base.  Now, with containers being directly transferred to the MLP, this platform must 

now receive the containers and then sort and store the cargo on limited deck space in such 

a manner that selective delivery is possible.  This may be done with an Automated 

Warehouse (AW) type technology and is certainly an area for further research.    
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IX. CONCLUSION 

This report looks at a key part of the Sea Base which is the Mobile Landing 

Platform (MLP) and makes recommendations on the initial concept design.  Sea Basing is 

the future of expeditionary warfare and it is important to consider how to invest limited 

funds with the continued demand for fiscal responsibility of the United States Navy.  It is 

imperative to conduct extensive study on the architecture of the Sea Base concept, its 

platforms and its technologies.   

A. MOBILE LANDING PLATFORM DESIGN 

The following recommendations are made for the initial concept design of the 

MLP. 

 Using this study it is determined that the MLP should service 
approximately 48 of the current Landing Craft – Air Cushioned (LCAC) 
with a total of seven loading spots.   

 Approximately 7,837 sqft should be set aside for storage on the MLP. 

 Investment should be made in a technology that increases the connector 
load rate on the MLP to 80 tons/hr.  This may be accomplished with 
Compact Agile Material Mover (CAMM). 

 Large to Large Vessel Interface Lift On / Lift Off (LVI LO/LO) is 
essential to the operation and the crane should be placed on the MLP to 
enable transfer of ISO containers directly from the cargo ship. 

 Small to Large Vessel At-Sea Transfer (STLVAST) is also essential to the 
operation for the transfer of cargo from the MLP to the LCACs. 

 Shipboard ISO Container Breakout and Repacking (CB&R) should be 
invested in due to limited deck space on the MLP. 

 Interface Ramp Technologies (IRT), Automated Warehouse (AW), and 
High Rate Vertical / Horizontal Material Movement (HRVHMM) was not 
used in this model with the elimination of the T-AKE from the supply 
train.  Further research should be done to see if these technologies have 
any utilization on the MLP.  
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B. RECOMMENDATIONS FOR FURTHER STUDY 

The following areas are recommended for further study. 

 Air connectors were not looked at beyond the initial study in this report 
due to the focus on the MLP.  Further studies should consider where the 
air connectors load and what impact the proximity will have on the 
simultaneous loading of other air and surface connectors. 

 Further research should be done in the area of selective delivery meaning 
how well the MLP will be able to pick and choose what it delivers to the 
objective with current and future technologies such as Automated 
Warehouse (AW). 

 Study should also be done on combinations of connectors including the 
Joint High Speed Vessel (JHSV) assuming a docking facility is available 
ashore.  This needs to be done because JHSV is a major asset in theater 
and could be used in combination with other surface connectors. 

 Further study should also be conducted on the area of cost.  This includes 
fuel for the platforms, with attention paid to the connectors.  Cost of 
developing new technologies and platforms should be considered as well 
as acquisition of these platforms.   

This study uses physics based principles to model and assess the Mobile Landing 

Platforms (MLP) system design.  With this initial design, more extensive modeling and 

simulation may now be conducted to refine the architecture of the Sea Base, its platforms, 

and its operations.  It provides a foundation for a broad area of study important to 

maximize our nation’s ability to conduct expeditionary warfare in the future and project 

power ashore.   
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